
Using Bitmap Index for Joint Queries on Structured and Text Data∗

Kurt Stockinger‡ John Cieslewicz§ Kesheng Wu‡ Doron Rotem‡ Arie Shoshani‡

Abstract

The database and the information retrieval communities have been working on separate sets of techniques for
querying structured data and text data, but there is a growing need to handle these types of data together. In this paper,
we present a strategy to efficiently answer joint queries on both types of data. By using an efficient compression
algorithm, our compressed bitmap indexes, called FastBit, are compact even when they contain millions of bitmaps.
Therefore FastBit can be applied effectively on hundreds of thousands of terms over millions of documents. Bitmap
indexes are designed to take advantage of data that only grows but does not change over time (append-only data),
and thus are just as effective with append-only text archives. In a performance comparison against a commonly used
database system with a full-text index, MySQL, we demonstrate that our indexes answer queries 50 times faster on
average. Furthermore, we demonstrate that integrating FastBit with a open source database system, called MonetDB,
yields similar performance gains. Since the integrated MonetDB/FastBit system provides the full SQL functionality,
the overhead of supporting SQL is not the main reason for the observed performance differences. Therefore, using
FastBit in other database systems can offer similar performance advantages.

1 Introduction
The records in data warehouses are usually extracted from other database systems and therefore contain only what
is known as structured data [10, 8, 29]. In these cases, most vendors are reusing existing database techniques to
perform analysis tasks. However, data warehouses and database systems are starting to include a large amount of text
documents, and the existing database techniques are inadequate for processing efficiently joint queries over structured
data and text data.

Data warehouses typically contain records that are not modified once added to the collection [8, 9, 14]. This is
very similar to most text collections, but different from transactional data, where the records are frequently modified.
For this reason, techniques developed for data warehouses are likely also useful for queries on text, provided that they
can be used effectively over thousands or even millions of terms.

Bitmap indexes are designed to take advantage of data that only grows but does not change over time (append-only
data). Recent work on compressed bitmap indexing has shown that they can be applied to attributes (columns) with
high cardinality; i.e., attributes that have a large number of possible distinct values. In particular, our compressed
bitmap indexes, called FastBit, are compact and perform extremely well even when the index contains millions of
bitmaps [40, 41]. It was therefore natural to investigate whether such indexes could be applied to searches over
append-only text data containing hundreds of thousands of terms over millions of documents. If successful, this
would enable efficient joint queries over structured and text data.

In this paper, we extend FastBit for searches over text data. We show that our proposed approach can significantly
speed up joint queries on structured data and text data. An additional advantage is that we achieve this high perfor-
mance gains by using the same indexing technique for both structured data and text data. We demonstrate that this can
be done with minimal modification to the existing FastBit code. A number of database systems already implement
various bitmap indexes, and the same modification can be made there too.

Originally, database management systems (DBMS) only handle structured data as tables, rows and columns,
where each column value must be an atomic data type. Recently, many DBMSs have removed this limitation and
allowed more complex data, such as date and time. Some of them even allow text. This enables text data to be stored

∗This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098. Part of the funding was provided by a US Department of Homeland Security Fellowship
administered by Oak Ridge Institute for Science and Education. We also thank the MonetDB Team at CWI, Netherlands for their great support of
the integration effort.

†This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. Part of the funding was provided by a US Department of Homeland Security Fellowship
administered by Oak Ridge Institute for Science and Education. We also thank the MonetDB Team at CWI, Netherlands for their great support of
the integration effort.

‡Lawrence Berkeley National Laboratory, University of California, Berkeley, CA.
§Computer Science Department, University of Columbia, New York, NY.

1



together with the structured data. However, to support efficient searching operations on text, additional indexing data
structures are introduced, e.g., the inverted index [4, 25, 49]. Among the popular database systems, MySQL is reputed
to have an efficient implementation of an inverted index. Therefore, we chose to compare FastBit against MySQL to
evaluate the merit of our approach. This comparison showed a large performance difference, with FastBit being 50
times faster in answering an average joint query on structured and text data.

To better understand whether the performance gain was due to difference in the indexing data methods or the
system overhead, we integrated FastBit into an open-source database system called MonetDB [5, 20]. The integrated
MonetDB/FastBit system has full SQL support and is much closer to MySQL in overall functionality than FastBit
alone. We found that the integrated MonetDB/FastBit system has similar performance as FastBit alone. This confirms
the performance advantage of FastBit over the full-text index in MySQL and indicates that our bitmap index is a valid
approach for handling joint queries on structured data and text data.

The paper is organized as follows. In Section 2, we review related work on indexing data structures for structured
data and text data. We also discuss the advantages of compressed bitmap indexes for querying both structured data
and text data. In Section 3, we briefly describe the test dataset, referred to as the Enron dataset, that has been used
in a number of studies on social networks. This dataset is particularly attractive since it contains a natural mixture of
structured data and text data. In Section 4, we describe our framework for indexing text data with our bitmap index
implementation, called FastBit. The challenges of integrating FastBit into MonetDB are briefly described in Section
5. An experimental evaluation of the combined MonetDB/FastBit system is presented in Section 6, with MySQL as
the reference point. We summarize the findings of our studies in Section 7 and point out open research topics on using
bitmap indexes for text searches.

2 Related Work
2.1 Indexing techniques for structured data
In the database community, a general strategy to reduce the time to answer a query is to devise an auxiliary data
structure, or an index, for the task. Earlier database systems were more commonly used for transaction type applica-
tions, such as banking. For this type of applications, indexing methods such as B+-tree and hash-based indexes are
particularly efficient [10, 22]. One notable characteristic of data in these applications is that they change frequently
and therefore their associated indexes must also be updated quickly.

As more data are accumulated over time, the need to analyze large historical data sets gained more attention. A
typical analysis on such data warehouses is known as On-Line Analytical Processing (OLAP). For these operations,
bitmap indexes are particularly efficient since they take advantage of the stable nature of the data (i.e., permitting
efficient append operations, but not updates) [21, 46, 44, 41]. OLAP queries typically return a relative large number
of selected values (also known as hits). In these cases, a bitmap index answers the queries much faster than a B+-tree,
but it takes longer to modify a bitmap index to update an existing record. However, for most data warehouses, existing
records are not updated, and the only change to a data warehouse is the addition of a large number of new records.
Appending new records to a bitmap index usually takes less time than updating a B+-tree because the time to append
to bitmap indexes is a linear function of the number of new records while the time to update a B+-tree is always a
superlinear function due to sorting involved. For these reasons, bitmap indexes are well-suited for data warehousing
applications.

In Fig. 1, we show a small example of a bitmap index for an integer column A that takes its value from 0, 1, 2,
and 3. In this case, we say that the column cardinality of A is 4. The basic bitmap index consists of four bitmaps, b1,
b2, b3, and b4. Each bitmap corresponds to one of the four possible values of A and contains as many bits (0 or 1) as
the number of rows in the table. In the basic bitmap index, a bit is set to 1 if the value of A in the given row equals
the value associated with the bitmap.

Let N denote the number rows in a table and C denote the column cardinality. It is easy to see that a basic bitmap
index contains CN bits in the bitmaps for the given column. As the column cardinality increases, the basic bitmap
index requires correspondingly more storage space. In the worst case where each value is distinct, C = N, the total
number of bits is N2. There are a number of different strategies to reduce this maximum index size; we organize them
into three orthogonal strategies: binning, encoding, and compression.

Binning: Instead of recording each individual value in a bitmap, the strategy of binning is to associate multiple
values with a single bitmap [17, 30, 45]. For example, to index a floating-point valued column B with a domain
between 0 and 1, we may divide the domain into 10 equi-width bins: [0,0.1), [0.1,0.2), . . . , [0.9,1]. In this case,
only 10 bitmaps are used. Binning can control the number of bitmaps used. However, the index is no longer able
to resolve all queries accurately. For example, when answering a query involving the query condition “B < 0.25,”
the information we get from the above binned index is that the entries in bins [0,0.1) and [0.1,0.2) definitely satisfy
the query condition, but the records in bin [0.2,0.3) have to be examined to determine whether they actually satisfy
the condition. We call the records in bin [0.2,0.3) candidates. The process of examining these candidates, called
candidate check, can be expensive [24, 34]. For this reason, all commercial bitmap indexes do not use binning[21, 35].

Encoding: We can view the output from binning as a set of bin numbers. The encoding procedure translates

2



bitmap index
RID A =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 1: A example bitmap index, where RID is the record ID and A is an integer column with values in the range of
0 to 3.

these bin numbers into bitmaps. The basic bitmap index [21] uses an encoding called equality encoding, where each
bitmap is associated with one bin number and a bit is set to 1 if the value falls into the bin, 0 otherwise. Other common
encoding strategies include range encoding and interval encoding [6, 7]. In range encoding and interval encoding,
each bitmap corresponds to a number of bins that are ORed together. They are designed to answer one-sided and
two-sided range queries efficiently. The three basic encoding schemes can also be composed into multi-level and
multi-component encodings [6, 31, 42]. One well-known example of a multi-component encoding is the binary
encoding scheme [39, 23], where the jth bitmap of the index represents the value 2 j. This encoding produces the
fewest number of bitmaps, however, to answer most queries, all bitmaps in the index are accessed. In contrast, other
encodings may access a few bitmaps to answer a query, for example, an interval encoded index only need to access
two bitmaps to answer any query.

Compression: Each bitmap generated from the above steps can be compressed to reduce the storage requirement.
Any compression technique may be used, however, in order to reduce the query response time, specialized bitmap
compression methods are preferred. Bitmap compression is an active research area [32, 41]. One of the best-known
bitmap compression methods is the Byte-aligned Bitmap Code by Antoshenkov [3, 15]. A more efficient bitmap
compression method is the Word-Aligned Hybrid (WAH) code [44, 41]. In multiple timing measurements, WAH was
shown to be about 10 times faster then BBC [43]. As for the index size, the basic bitmap index compressed with WAH
is shown to use at most O(N) words, where N is the number of records in the dataset [44, 41]. In most applications,
a WAH compressed basic bitmap index is smaller than a typical B-tree implementation.

Given a range condition that can be answered with a WAH compressed index, the total response time is propor-
tional to the number of hits [41]. This is optimal in terms of computational complexity. In addition, compressed
bitmap indexes are in practice superior to other indexing methods because the result from one index can be easily
combined with that of another through bitwise logical operations. Therefore, bitmap indexes can efficiently answer
queries involving multiple columns, a type of query we call the multi-dimensional query.

2.2 Database Systems for Full-Text Searching
Traditionally, DBMS treat text attributes as strings that have to be treated as a whole, or as opaque objects that
can not be queried. However, users frequently need to identify text containing certain keywords. Supporting such
keyword based text retrieval in database systems is an important research topic. The research literature discusses
incorporating text retrieval capabilities into different types of database systems such as relational database systems
[16], object oriented databases [47], and XML databases [1]. Our approach follows the general theme of combining
relational databases with text searching capabilities [38, 18]. In this context, it is crucial to address the modeling
issues, query languages and appropriate index structures for such database systems [27, 26]. A recent prototype of
such a system, called QUIQ [16]. The engine of this system, called QQE, consists of a DBMS that holds all the
base data and an external index server that maintains the unified index. Inserts and updates are made directly to the
DBMS. The index server monitors these updates to keep its indexes current. It can also be updated in bulk-load mode.
Another recent paper describes a benchmark called TEXTURE which examines the efficiency of database queries that
combine relational predicates and text searching [12]. Several commercial database systems were evaluated by this
benchmark.

Another approach for combining text retrieval and DBMS functionality is to use the external function capability
of object oriented databases. Combining the structured-text retrieval system (TextMachine) with an object-oriented
database system (OpenODB) has also been explored before [47].

As XML document is able to represent a mix of structured and text information, a third approach that is recently
gaining some popularity is to combine text retrieval with XML databases. For example, there are proposals to extend
the XQuery language with complex full-text searching capabilities [1].

3



Supporting text in databases requires appropriate index structures. One type of index proposed for text searching
is called Signature files [13]. The space overhead of this index (10%-20%) is lower than that of inverted files, but any
search always accesses the whole index sequentially. This index uses a hash function that maps words in the text to
bit masks consisting of B bits called signatures. The text is then divided into blocks of b words each. The bit mask for
each block is obtained by ORing the signatures of all the words in the block. A search for a query word is conducted
by comparing its signature to the bit mask of each block. In case that at least one bit of the query signature is not
present in the bit mask of a block, the word cannot be present in this block. Otherwise, the block is called a candidate
block as the word may be present in it. All candidate blocks must be examined to verify that they indeed contain the
query word.

Another common structure for indexing text files, found in commercial database systems and text search engines,
is the inverted file index [49]. This data structure consists of a vocabulary of all the terms and an inverted list structure
[36]. For each term t the structure contains the identifiers (or ordinal numbers) of all the documents containing t as
well as the frequency of t in each document. Such a structure can also be supplemented with a table that maps ordinal
document numbers to disk locations. As inverted files are known to require significant additional space (up to 80%
of the original data) [50], we next review the compression issue.

2.3 Compressing Inverted Files
The inverted indexes commonly used for text searching are usually compressed [19, 37, 48]. The primary use of
the compressed data in an inverted index is to reconstruct the document identifiers. Reducing the amount of time
required to read the compressed data into memory is key to reducing the query response time. For this reason, the
compression methods used to be measured exclusively by their compressed sizes. However, recently there has been
some emphasis on compute efficiency as well [2, 37]. In particular, Anh and Moffat have proposed a Word-Aligned
Binary Compression for text indexing, which they call slide [2], even though their primary design goal was to reduce
the compressed sizes rather than improving the search speed. Making the decompression (i.e., reconstruction of the
document identifiers) more CPU friendly is only a secondary goal. They achieve this by packing many code words
that require the same number of bits into a machine word. Because all these code words require the same number of
bits, they save space by only representing their sizes once. In contrast, WAH imposes restrictions on lengths of the bit
patterns that can be compressed so that the bitwise logical operations can be performed on compressed words directly
[44, 41]. In particular, a WAH code word is always a machine word. These properties yield efficient computations.

Because of their differences, it is usually not efficient to use a bitmap compression method to compress document
identifiers or a compression method for the inverted index to compress bitmaps. What we propose to do in this paper
is to turn a term-document matrix (a version of the inverted index) into a bitmap index, then compress the bitmap
index. This approach allows us to make the maximum use of the efficient bitmap compression method WAH and
reuse the bitmap indexing software for keyword searches.

The approach we take in this paper is to use compressed bitmaps to represent inverted files, an approach that is
efficient for relatively small number of distinct terms. However, recently WAH-compressed indexes have been shown
to be very efficient for high cardinality numerical data [41]. The strength of this particular work is to demonstrate
that the compressed bitmap approach is efficient for text data with a large number of distinct terms. Using a com-
pressed bitmap index, the results of processing a query condition is a compressed bitmap. The bitmaps representing
the answers to different query conditions can be efficiently combined to form the final answer to the user query
through logical operations. Since WAH compressed bitmaps can participate in logical operations efficiently without
decompression, we anticipate this to be a great advantage of our approach.

For performance comparison, we choose to use MySQL for two reasons. The first reason is that MySQL im-
plements an inverted index for full-text searches and its full-text search capability is well-regarded by the user com-
munity. The second reason is that MySQL is widely available, and has one of the most commonly used inverted
indexes [49].

3 Case Study: The Enron Data Set
The Enron dataset, a large set of email messages, is used by various researchers in the areas of textual and social
network analysis. The dataset was made public by the US Federal Energy Regulatory Commission during the criminal
investigation into Enron’s collapse in 2002. This dataset is particularly attractive for studies of index data structures
since it contains numerical, categorical, and text data. Our case study is based on the data prepared by Shetty and
Adibi [28] and contains 252,759 email messages stored in four MySQL tables, namely EmployeeList, Message,
RecipientInfo and Reference Info.

In early performance experiments comparing FastBit with MySQL, we showed that FastBit greatly outperformed
MySQL for queries over structured data, including all numerical and categorical values [33]. One of the key findings
of these experiments was that materializing some tables to avoid expensive join operations can significantly reduce
query response time. We plan to use the same dataset for our study of querying combined structured data and text

4



Table 1: Schema of database table Headers.
Column Name Explanation

mid Message ID
senderFirstName First name of the sender (only Enron employees)
senderLastName Last name of the sender (only Enron employees)
senderEmail Email address of the sender
recipientFirstName First name of the recipient (only Enron employees)
recipientLastName Last name of the recipient (only Enron employees)
recipientEmail Email address of the recipient
day Day email was sent
time Time email was sent
rtype Receiver type: “TO,” “CC,” and “BCC”

Table 2: Schema of database table Messages.
Column Name Explanation

mid Message ID
subject Subject of email message
body Body of email message
folder Name of folder used in email client

data. Following the above observation, we combined six tables into two tables called Headers and Messages (see
Tables 1 and 2), where the first contains primarily structured data and the second contains primarily text data.

The table Headers contains both numerical and categorical values, whereas Messages contains only text
data. Table Headers is a materialization of the parts from the three original tables EmployeeList, Messages
and RecipientInfo. Table Messages contains a subset of the columns of the original table Messages. The
advantage of this schema design is to use bitmap indexes for query processing for both tables. The column mid in
Messages is a foreign key to the column of the same name in Headers and is used to join message text columns
with the corresponding numerical and categorical data.

4 Extending Bitmap Indexes to Support Full Text Search
FastBit compressed bitmap index technology was originally designed to speed up queries on numerical data. In this
section we describe how to extend bitmap indexes to support keyword queries over text data. Indexing text usually
requires the following two steps: text parsing and term extraction and index generation.

In our framework we use Lucene [11] for text parsing and term extraction. The output of Lucene is a term-
document list which is an inverted index that contains all identified terms across all documents and a set of document
identifiers (IDs) of each document containing the term. Once the term-document list is obtained, we convert the
term-document list into a bitmap index consisting of a dictionary of terms and a set of compressed bitmaps. Note that
the use of a dictionary is not essential to the approach, but it is a convenient way to reuse the existing software for
indexing integer data.

As illustrated in Figure 2, assuming a database table called Messages containing four columns mid, body,
subject and folder, we proceed to build our bitmap index as follows. We first extract each text value, say from
column body, into a file named after the mid column. Note that the Message IDs, mid, are the same as used in the
MySQL version of the Enron e-mail message dataset [28]. In Figure 2, these files are indicated by “body1,” “body2,”
etc.. Next, we pass this set of files to Lucene to identify terms in the files. The output from Lucene is a list of terms,
and for each term a list of files containing the term. Since the file names are the mids, we effectively produce a list
of mid values for each term. For instance, the term “Berkeley” appears in the messages with the IDs 1, 3, 5 and 8.
Similarly, the term “Columbia” appears in the messages with the IDs 5, 7, 8 and 9. These lists are the core content of
a typical inverted index. Additional content typically include term frequencies [4, 25]. Since other inverted indexes
contains more information than the term-document list, they take more space than the term-document list without
compression.

The next step is to convert the term-document list into a bitmap index. However, before we can index the identified
terms with bitmaps, we need to introduce an auxiliary data structure, called a dictionary, that provides a mapping
between the terms and the bitmaps. In our example, “Berkeley” is represented by the numerical value 1, “Columbia”

5



Figure 2: Framework for Indexing Text with FastBit. This illustration use the column “Body” as the example.

by the value 2 and “Enron” by the value 3 (see “dictionary” in Figure 2). Next, the message IDs originally stored
in the term-document lists can be encoded with bitmaps. For instance, the bitmap representing “Berkeley” contains
the bit string 101010010 to indicate that “Berkeley” is contained in the messages 1, 3, 5 and 8. Similarly, the bitmap
representing “Columbia” contains the bit string 000010111 to indicate that “Columbia” is contained in the message
5, 7, 8, and 9. In other words, a bit is set to 1 if the respective term is contained in a message, otherwise the bit is set
to 01.

Using compressed bitmap indexes for storing term-document lists supports keyword searches efficiently. For
instance, finding all emails where body contains the terms “Berkeley” and “Columbia” requires reading two bitmaps
and combining them with a logical AND operation. As showed in the past, such basic bitmap operations are very
efficient [43].

5 Integrating FastBit into MonetDB
We decided to integrate FastBit into a relational database system for two reasons. First, as part of a relational database
management system, FastBit would benefit from the system’s ability to undertake tasks beyond indexing and querying,
such as performing joins between tables and enforcing consistency in the records. Second, by adding FastBit to a
relational database system, relational data can benefit from FastBit’s high performance indexes. With the addition of
text searching to FastBit, adding FastBit to a relational system also provides a high performance tool for keyword
searches. The database system we chosen is MonetDB, an open source database system developed by CWI [20]. In
this section we begin by describing MonetDB and our reasons for choosing it, then briefly describe our integration of
FastBit with MonetDB.

5.1 Why MonetDB?
MonetDB is our target relational database system for FastBit integration because of its data layout. Unlike most
databases, such as MySQL or Oracle, that use horizontal or row-based storage, MonetDB uses vertical partitioning
also known as a decomposed storage model (DSM) [5]. See Figure 3 for an illustration of the storage techniques.
In a database with row-based storage, entire records are stored contiguously, thus making access to entire records
efficient, but wasting I/O and memory bandwidth when only a small subset of columns is required [5, 29, 35]. For
instance, in Figure 3b the records are read right to left, top to bottom during a scan even if the query is interested in
only column a2 in each record. That is, the entire record is loaded even though only a small part of it is needed. With
a DSM, single columns are stored contiguously (Figure 3c) resulting in efficient I/O for queries that involves only a
subset of the columns. MonetDB’s data layout is analogous to FastBit indexing, where each column is indexed and
stored separately.

The MonetDB SQL Server is a two-layer system [20]. On the bottom is the MonetDB kernel that manages the
actual data. At this layer, the data is not stored as a complete relational table, but is decomposed into separate Binary
Association Tables (BAT)–one for each column. Each entry in the BAT is a two-field record containing an object
identifier (OID) and a column data value. All column values for the same relational tuple have the same OID even
though they are stored in separate BATs. Interaction with these BATs is accomplished via the Monet Interpreter
Language (MIL), that can be extended with new commands which we make use of as outlined next.

The SQL module sits atop the MonetDB kernel and provides an SQL interface for client applications. Though
the relational tables are actually decomposed into many BATs, the SQL module allows users to interact with the data
in the normal relational manner. The SQL module is responsible for transaction and session management as well as

1In general, the document identifiers may not be directly used as row numbers for setting the bits in the bitmaps. We may actually need an
additional step of mapping the document identifiers to row numbers. This additional level of operational detail is skipped for clarity.

6



a1 a2 a3
a11 a21 a31
a12 a22 a32

...
...

...
a1n a2n a3n

{a11, a21, a31}
{a12, a22, a32}

...
{a1n, a2n, a3n}


a11
a12

...
a1n




a21
a22

...
a2n




a31
a32

...
a3n


(a) Logical
View.
Each row has
three columns

(b) Horizontal Partition-
ing.
Store values from the
same row contiguously

(c) Vertical Partitioning
Store values from the
same column contigu-
ously

Figure 3: An illustration of horizontal and vertical Partitioning.

transforming SQL queries into MIL code to be executed by the MonetDB kernel. With the help of the MonetDB
developers at CWI, we decided it would be best to integrate FastBit into the SQL module rather than the underlying
MonetDB kernel. In the following sections we give an overview of the changes required to integrate FastBit into
MonetDB/SQL. Note that all changes described occurred within the SQL module; the MonetDB kernel was left
unchanged. The MonetDB kernel was version 4.12 and the SQL module was version 2.12. Both are available from
the MonetDB website at http://monetdb.cwi.nl/.

5.2 Integrating MonetDB and FastBit
Integrating FastBit into MonetDB’s SQL module (MonetDB/SQL) required four tasks: (1) addition of the FASTBIT
keyword to MonetDB’s SQL parser, (2) functionality to allow MonetDB to send data to a FastBit library for index
construction, (3) rules to recognize subqueries that are FastBit eligible during query optimization, and (4) integration
of FastBit and MonetDB execution so that a unified query result is produced by MonetDB. We next briefly describe
each of these tasks.

Overall, users continue to interact with MonetDB/SQL as the front end. To allow MonetDB to invoke FastBit
index creation functions, we need to do two things: first to inform the MonetDB system that it needs to invoke FastBit
indexing creation functions, and then to prepare the necessary base data for index creation. We modified the parser
in the SQL module to recognize the keyword FASTBIT in the index creation command. This keyword informs
MonetDB to invoke FastBit for index creation.

In order for FastBit to create an index, it needs to know the raw data of the column to be indexed. This set of data
is written to a specific directory under the data directory for MonetDB. MonetDB server then invokes the appropriate
functions to create FastBit indexes. The metadata held by the MonetDB server is modified to reflect the existence of
FastBit indexes and it has to update the FastBit indexes when the data is modified.

Since FastBit can only perform a subset of queries that MonetDB supports, recognizing which part of the query
can take full advantage of FastBit indexes is critical. We achieve this by examining and modifying the query plan
generated by the MonetDB SQL parser. All equality conditions and range conditions on variables that have FastBit
indexes are recognized as suitable for FastBit processing, and they are combined together into a special node in the
query plan. This special node along with its parameters are later passed to FastBit. To perform a keyword search, we
overload the operator ’=,’ for example, the MySQL expression “MATCH(body) AGAINST(’Berkeley’)” would be
expressed as “body = ’Berkeley’.”

The special node in the query execution plan is translated into a command in Monet Interpreter Language called
fastbit execute. The MonetDB execution engine recognizes this command and composes the appropriate query
string for FastBit. Following a typical evaluation command, the command fastbit execute also produces a list
of OIDs. This allows other operations in MonetDB to proceed as usual.

6 Experiments
This section contains a discussion of our experimental results and demonstrates that adding compressed bitmap in-
dexes to a relational database system enables high performance, integrated querying of structured data and text data.

The first two parts of this section (6.1 and 6.2) present some statistics about the term distribution in our text
data as well as the size and cardinality of the bitmap indexes constructed for all columns in the Enron Data Set.
The remainder of the section presents the timing results. The experiments compare MySQL, a popular open-source
database management system supporting text searching, a stand-alone FastBit client, and MonetDB integrated with
FastBit. The experiments are broken down into three groups: (1) queries over structured data, (2) queries over text
data, and (3) queries over both structured data and text data.

Each query in the following experiments was issued both as a count query and as an output query. A count query
returns only the number of hits, that is, the SQL SELECT clause starts with SELECT COUNT(*) FROM. An output

7



(a) Messages “body” (b) Messages “subject”

Figure 4: Term frequency distribution in the message “body” and “subject.”

query retrieves data values associated with the tuples in the result set. Note that all performance graphs are shown
with a log-log scale.

All experiments were conducted on a server with dual 2.8 GHz Pentium 4 processors, 2 GB of main memory, and
an IDE RAID storage system capable of sustaining 60 MB/sec for reads and writes. Before we executed each set of
1000 queries, we unmounted and remounted the file system containing the data and the indexes as well as restarted
the database servers in order to ensure cold cache behavior.

6.1 Data Statistics
Figure 4 shows the term frequency distributions in the “body” and the “subject” of the Enron emails. The terms were
extracted with Lucene. Both distributions match Zipf’s law as commonly observed in many phenomena in nature.
The total number of distinct terms in the message body is more than 1.2 million. The total number of distinct terms
in the message subject is about 40,000.

6.2 Size of Bitmap Indexes
Table 3 shows the size of raw data compared with the size of the compressed bitmap indexes for each column of
table Headers. The column cardinalities of each columns are also given. Note that we have chosen not to index
column mid because it is unique for every message and is therefore more efficient to directly work with the raw data
to answer typical queries involving it. The sizes of the compressed bitmap indexes are much smaller than the raw
data. For instance, the index size for column recipientEmail is about 20% or raw data even though this column
has a very high column cardinality, about 70,000. For lower cardinality columns, such as senderEmail, the bitmap
index sizes are only about 2∼3% of the raw data.

Table 4 shows the size of the compressed bitmap indexes for the table Messages, i.e., the table that stores the
text data. In addition to the size of the raw data, we also provide the size of the uncompressed term-document list.
We see that the space required for table Messages is dominated by the column body. Since it contains more than
1.2 million distinct terms, its index is also the largest. In this case, the size of the compressed bitmap index is about
half the size of the term-document list, which in turn is about half the size of the raw data. On average, we use less
than 100 bytes per term indexed. Overall, the compressed bitmap indexes are smaller than the term-document lists,
which are the minimal information in typical inverted indexes.

From earlier analyses of the WAH compressed bitmap indexes [44, 41], we know that the upper bound of the total
size of bitmaps is a linear function of the number of rows in the dataset. For typical high-cardinality data, the total
size of bitmaps may be twice the size of the base data. The relative sizes shown in Tables 3 and 4 indicates that the
actual index sizes are well within the predicted upper bounds. Note that the index sizes reported in Tables 3 and 4
include all information associated with the compressed bitmaps such as the dictionary for text data.

6.3 Query performance on structured data
In this first set of timing measurements, we present the time required to answer queries on structured data from table
Headers. We tested queries of one- and two-dimensions, with and without retrieving data values.

Figure 5 shows the timing results of running 1000 one- and two-dimensional queries. In the query expressions,
“:S” and “:D” denote the values that vary in the 1000 queries. In the one-dimensional queries, our queries use top
1000 senders as the value of “:S.” To answer these count queries FastBit is clearly faster than MySQL. On average,
FastBit is about a factor of 36 faster than MySQL as shown in Table 5.

For each count query, we also execute an output query with the same set of query conditions. The timing results
for answering these queries are shown in Figure 5(c) and (d). On these queries, FastBit takes much longer to retrieve

8



Table 3: Size of the raw data compared with the size of compressed bitmap indexes for each column of the table
Headers. For the categorical values also the dictionary sizes are also given.

Column Card. Data Dict. Bitmap Index
[MB] [MB] [MB] [% Data]

mid 252,759 8.26
senderFirstName 112 7.21 0.0007 0.14 1.9
senderLastName 148 7.70 0.0001 0.14 1.8
senderEmail 17,568 48.00 0.4336 1.41 2.9
recipientFirstName 112 7.20 0.0007 0.14 1.9
recipientLastName 148 7.52 0.0001 1.40 18.6
recipientEmail 68,214 47.78 1.5454 13.69 28.6
day 1,323 8.26 0.74 9.0
time 46,229 8.26 3.24 39.2
rtype 3 6.45 0.0001 0.49 7.6

Table 4: Size of the raw data and the term-document list (td-list) compared with the size of compressed bitmap indexes
including the dictionary for each column of table Messages.

Column Card. Data td-list Dict. Bitmap Index Size
[MB] [MB] [MB] [MB] [% Data] [% td-list]

mid 252,759 1.01
subject 38,915 7.56 8.20 0.31 5.23 69.2 63.8
body 1,247,922 445.27 245.57 16.92 121.72 27.3 49.6
folder 3,380 20.98 8.09 0.04 0.14 0.7 1.7

the selected values than the other two. This is because FastBit reconstruct the string values from the content of the
dictionary and the bitmap representing the hits. In contrast, the combined system uses FastBit to retrieve the object
identifiers and uses MonetDB to retrieve the values. Clearly, this is a better option. Overall, using MonetDB/FastBit
is about eight times faster than using MySQL, see Table 5.

When a WAH compressed bitmap index is used to answer a query, analyses show that the worst-case query
response time is bounded by a linear function of the number of hits [44, 41]. This worst case can be achieved with
uniform random data. Since the actual index sizes shown in Table 3 are much smaller than predicted worst-case sizes
and the average query response time is proportional to the index size, the query response time should be proportionally
less than in the worst case. This expectation is for one-dimensional queries shown in Figure 5(a). The answers to
multi-dimensional queries are composed from answers to multiple one-dimensional queries. One average, the total
query response time for a k-dimensional query is k times that of a one-dimensional query.

Table 5: Total time in seconds for running 1,000 queries against table Headers. This is a summary of the results
presented in Figure 5.

MySQL FastBit MonetDB/FastBit

Fig. 5a 5.17 0.17 1.53
Fig. 5b 51.56 1.29 2.73
Total time 56.72 1.46 7.45
Speedup 36.4 13.3

Fig. 5c 47.66 181.64 6.35
Fig. 5d 53.17 95.93 5.86
Total time 100.93 277.57 12.21
Speedup 0.36 8.27

9



(a) 1D Count Query:
SELECT count(*)
FROM Header
WHERE senderEmail = :S

(c) 1D Output Query:
SELECT recipientEmail
FROM Header
WHERE senderEmail = :S

(b) 2D Count Query:
SELECT count(*)
FROM Header
WHERE senderEmail = :S

AND day < :D

(d) 2D Output Query:
SELECT recipientEmail, day
FROM Header
WHERE senderEmail = :S

AND day < :D

Figure 5: Count and output queries on the table Headers. A summary of the performance measurements is given in
Table 5.

Table 6: Total time in seconds for running 1,000 count queries against the table Messages. This table is a summary of
the results presented in Figure 6.

MySQL FastBit MonetDB/FastBit

Fig. 6a 324.79 0.58 1.56
Fig. 6b 311.11 0.58 1.45
Fig. 6c 532.12 13.34 13.32
Fig. 6d 518.70 18.06 15.71

Total time 1706.72 32.56 32.04
Speedup 52.42 53.26

6.4 Query Performance for Text Searching
Next, we study the keyword searching capability of FastBit and compare it with that of MySQL. Figure 6 shows both
the timing results and the queries used. As before, our actual queries replace the variables with top 1000 frequent
terms from each of the text columns. Presumably, the most frequent terms are also “interesting” for text analysis since
these terms are more discussed among people in Enron emails and might thus have a higher semantic meaning.

Figure 6 shows the response times for 1000 queries over the subject and the body of the email messages from the
Enron data set. Table 6 shows a summary of timing information. For those queries containing one keyword, using
FastBit as a stand-alone system, is more than 500 times faster than using MySQL. Since these queries need to pass a
relatively larger number of OIDs from FastBit to MonetDB, the combined MonetDB/FastBit takes longer time using
FastBit alone. Nevertheless, the combined system still show very impressive speedup over MySQL, about 50.

10



(a) 1D Subject Query:
SELECT count(*) FROM Messages
WHERE MATCH(subject) AGAINST (:S1)

(c) 1D Body Query:
SELECT count(*) FROM Messages
WHERE MATCH(body) AGAINST (:B1)

(b) 2D Subject Query:
SELECT count(*) FROM Messages
WHERE MATCH(subject) AGAINST (:S1)

AND MATCH(subject) AGAINST (:S2)

(d) 2D Body Query:
SELECT count(*) FROM Messages
WHERE MATCH(body) AGAINST (:B1)

AND MATCH(body) AGAINST (:B2)

Figure 6: Count queries on the “subject” and “body” columns of the table Messages. A summary of the performance
measurements is given in Table 6.

6.5 Query Performance for both Numerical and Text Data
Our last set of experiments is the most challenging because it requires a join operation over the tables Headers
and Messages. Since FastBit currently does not support join operations, we implemented a simple sort-merge join
algorithm outside of FastBit. In particular, a join query over two tables consists of four FastBit queries. The first
query evaluates the query condition on the table Headers. The second query evaluates the query condition on the
table Messages. Next, the lists of resulting message IDs (mids) of both queries are sorted and intersected to find
the common ones. The list of common mids is then sent back as two queries in the form of “mid IN (12, 35,
89, ...).” Finally, the desired columns are retrieved from the two tables. The count queries can skip the last step
since they do not retrieve any values. Retrieving values through FastBit this way is likely to be slow because FastBit
is not efficient at retrieving string values, and parsing the long query expression involving thousands of mids is also
time consuming.

In Figures 7 and 8, we plot the query response time against the number of hits for the combined queries on both
structured data and text data. In these tests, the combined MonetDB/FastBit uses FastBit to perform the filtering
one each table and then perform the sort-merge join on mid. Since our external join algorithm essentially does
the same thing, we see that FastBit and MonetDB/FastBit take about the same amount of time. Both of them are
significantly faster than MySQL. Table 7 shows the total time to answer 1000 queries. Overall, we see that FastBit
and MonetDB/FastBit are about 52 and 67 times faster than MySQL in answering these count queries.

Figure 8 shows the query response time of the output queries. Because retrieving string values using FastBit is
slow, the overall speed of FastBit versus MySQL decreases to 16, but MonetDB/FastBit combined system remains
about 64 times faster than MySQL.

7 Conclusions and Future Work
We propose a way of using compressed bitmaps to represent the commonly used term-document matrix to support
keyword searches on text data. By using a compute-efficient compression technique, we are able to not only keep the
indexes compact but also answer keyword queries very efficiently. In our detailed experimental study we show that

11



(a)
SELECT count(*)
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND senderEmail = :S
AND m.mid = h.mid

(b)
SELECT count(*)
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND recipientEmail = :S
AND m.mid = h.mid

(c)
SELECT count(*)
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND senderEmail = :S
AND day < :D AND m.mid = h.mid

(d)
SELECT count(*)
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND recipientEmail = :S
AND day < :D AND m.mid = h.mid

Figure 7: Integrated numerical and text count queries. These queries are shown in the format used by MySQL. A
summary of the performance measurements is given in Table 7.

Table 7: Total time in seconds for running 1,000 join queries against tables Headers and Messages. This table is a
summary of the results in Figures 7 and 8.

MySQL FastBit MonetDB/FastBit

Fig. 7a 1302.28 16.54 16.03
Fig. 7b 866.98 23.37 17.45
Fig. 7c 975.18 24.81 18.10
Fig. 7d 556.80 6.40 2.98
Total time 3701.24 71.12 54.56
Speedup 52.04 67.84

Fig. 8a 1303.24 82.55 18.24
Fig. 8b 970.31 78.64 18.51
Fig. 8c 977.99 53.00 19.17
Fig. 8d 557.27 21.24 3.35
Total time 3808.81 235.43 59.27
Speedup 16.18 64.26

12



(a)
SELECT recipientEmail, day, subject
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND senderEmail = :S
AND m.mid = h.mid

(b)
SELECT senderEmail, day, subject
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND recipientEmail = :S
AND m.mid = h.mid

(c)
SELECT recipientEmail, day, subject
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND senderEmail = :S
AND day < :D
AND m.mid = h.mid

(d)
SELECT senderEmail, day, subject
FROM Messages m, Headers h
WHERE MATCH(body) AGAINST (:B1)

AND recipientEmail = :S
AND day < :D
AND m.mid = h.mid

Figure 8: Integrated numerical and text output queries. These queries are shown in the format used by MySQL. A
summary of the performance measurements is given in Table 7.

our bitmap index technology called FastBit answers count queries over text data about 50 times faster than MySQL.
To provide the full functionality of SQL including text search, we integrated our text index technology with

an open-source database management system called MonetDB. This integration introduces text-search capability to
MonetDB. Our performance experiments demonstrate that the integrated system significantly reduces the time needed
to answer joint queries over structured data and text data. Compared with MySQL, the integrated system is 60 times
faster on average at retrieving text values subject to multi-dimensional query conditions. This demonstrates that the
demand of providing full SQL support does not necessarily diminish performance. It further validates our compressed
bitmap approach as an efficient way of accelerating joint queries on structured data and text data.

The work presented in this paper only supports Boolean queries over the text data, i.e., without ranking the results.
Future versions of bitmap indexes may include ranking information, as well as proximity of terms in text documents.

References
[1] AmerYahia, S., Botev, C., Shanmugasundaram, J.: TeXQuery: A FullText Search Extension to XQuery. In:

WWW2004. New York, New York, USA (2004)

[2] Anh, V.N., Moffat, A.: Improved Word-Aligned Binary Compression for Text Indexing. IEEE Transactions on
Knowledge and Data Engineering 18(6), 857–861 (2006)

[3] Antoshenkov, G.: Byte-aligned Bitmap Compression. Tech. rep., Oracle Corp. (1994). U.S. Patent number
5,363,098

13



[4] Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (1999)

[5] Boncz, P.A., Manegold, S., Kersten, M.L.: Database architecture optimized for the new bottleneck: Memory
access. In: The VLDB Journal, pp. 54–65 (1999)

[6] Chan, C.Y., Ioannidis, Y.E.: Bitmap Index Design and Evaluation. In: SIGMOD. ACM Press., Seattle, Wash-
ington, USA (1998)

[7] Chan, C.Y., Ioannidis, Y.E.: An Efficient Bitmap Encoding Scheme for Selection Queries. In: SIGMOD. ACM
Press., Philadelphia, Pennsylvania, USA (1999)

[8] Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record
26(1), 65–74 (1997)

[9] Chaudhuri, S., Dayal, U., Ganti, V.: Database technology for decision support systems. Computer 34(12),
48–55 (2001)

[10] Comer, D.: The ubiquitous B-tree. Computing Surveys 11(2), 121–137 (1979)

[11] Doug Cutting, e.a.: Apache lucene. Http://lucene.apache.org

[12] Ercegovac, V., DeWitt, D.J., Ramakrishnan, R.: The texture benchmark: Measuring performance of text queries
on a relational dbms. In: VLDB, pp. 313–324 (2005)

[13] Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents and its analytical perfor-
mance evaluation. ACM Trans. Inf. Syst. 2(4), 267–288 (1984)

[14] Inmon, W., Hackathorn, R.: Using the data warehouse. Wiley-QED Publishing, Somerset, NJ, USA (1994)

[15] Johnson, T.: Performance Measurements of Compressed Bitmap Indices. In: International Conference on Very
Large Data Bases. Morgan Kaufmann., Edinburgh, Scotland (1999)

[16] Kabra, N., Ramakrishnan, R., Ercegovac, V.: The QUIQ Engine: A Hybrid IR-DB System. In: ICDE, pp.
741–743. IEEE (2003)

[17] Koudas, N.: Space efficient bitmap indexing. In: International Conference on Information and Knowledge
Management. ACM Press., McLean, Virginia, USA (2000)

[18] L.V. Saxton, V.R.: Design of an integrated information retrieval/database management system. IEEE Transac-
tions on Knowledge and Data Engineering 2, 210–219 (1999)

[19] Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Transcations on Information
Systems 14(4), 349–379 (1996)

[20] MonetDB: Query Processing at Light-Speed. Http://monetdb.cwi.nl

[21] O’Neil, P.: Model 204 Architecture and Performance. In: 2nd International Workshop in High Performance
Transaction Systems. Springer-Verlag, Asilomar, California, USA (1987)

[22] O’Neil, P., O’Neil, E.: Database: pronciples, programming, and performance, 2nd edn. Morgan Kaugmann
(2000)

[23] O’Neil, P., Quass, D.: Improved Query Performance with Variant Indexes. In: Proceedings ACM SIGMOD
International Conference on Management of Data. ACM Press, Tucson, Arizona, USA (1997)

[24] Rotem, D., Stockinger, K., Wu, K.: Optimizing candidate check costs for bitmap indices. In: CIKM (2005)

[25] Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of information by computer.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)

[26] Schek, H.J.: Nested Transactions in a combined IRS-DBMS Architecture. In: International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. ., Cambridge, England (1984)

[27] Schek, H.J., Pistor, P.: Data Structures for an Integrated Data Base Management and Information Retrieval
System. In: International Conference on Very Large Data Bases. Morgan Kaufmann., Mexico City, Mexico
(1982)

[28] Shetty, J., Adibi, J.: The Enron Email Dataset, Database Schema and Brief Statistical Re-
port. Tech. rep., Information Sciences Institute, Marina del Rey, California (2006). URL
http://www.isi.edu/ãdibi/Enron/Enron Dataset Report.pdf

[29] Shoshani, A.: OLAP and statistical databases: similarities and differences. In: Principles Of Database Systems
(PODS), pp. 185–196 (1997)

[30] Shoshani, A., Bernardo, L.M., Nordberg, H., Rotem, D., Sim, A.: Multidimensional indexing and query coordi-
nation for tertiary storage management. In: 11th International Conference on Scientific and Statistical Database
Management, Proceedings, Cleveland, Ohio, USA, 28-30 July, 1999, pp. 214–225. IEEE Computer Society
(1999)

14



[31] Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans. Database Syst.
32(3), 16 (2007)

[32] Stabno, M., Wrembel, R.: Rlh: bitmap compression technique based on run-length and huffman encoding.
In: DOLAP ’07: Proceedings of the ACM tenth international workshop on Data warehousing and OLAP, pp.
41–48. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1317331.1317339

[33] Stockinger, K., Rotem, D., Shoshani, A., Wu, K.: Bitmap Indexing Outperforms MySQL Queries by Several
Orders of Magnitude. Tech. Rep. LBNL-59437, Berkeley Lab, Berkeley, California (2006)

[34] Stockinger, K., Wu, K., Shoshani, A.: Evaluation Strategies for Bitmap Indices with Binning. In: DEXA.
Springer-Verlag., Zaragoza, Spain (2004)

[35] Sybaseiq. Http://www.sybase.com/products/information management/sybaseiq

[36] Tomasic, A., Garcia-Molina, H., Shoens, K.A.: Incremental Updates of Inverted Lists for Text Document Re-
trieval. In: SIGMOD Conference. Minneapolis, Minnesota, USA (1994)

[37] Trotman, A.: Compressing inverted files. Information Retrieval 6, 5–19 (2003)

[38] de Vries, A., Wilschut, A.: On the Integration of IR and Databases. In: IFIP 2.6 DS-8 Conference. Rotorua,
New Zealand (1999)

[39] Wong, H.K.T., Liu, H.F., Olken, F., Rotem, D., Wong, L.: Bit transposed files. In: Proceedings of VLDB 85,
Stockholm, pp. 448–457 (1985)

[40] Wu, K.: FastBit: an efficient indexing technology for accelerating data-intensive science, J. Phys.: Conf. Ser.,
vol. 16, pp. 556–560. Institute of Physics (2005). Software available at http://sdm.lbl.gov/fastbit/

[41] Wu, K., Otoo, E., Shoshani, A.: An efficient compression scheme for bitmap indices. ACM Transactions on
Database Systems 31, 1–38 (2006)

[42] Wu, K., Otoo, E.J., Shoshani, A.: Compressed bitmap indices for efficient query processing. Tech. Rep. LBNL-
47807, LBL, Berkeley, CA (2001)

[43] Wu, K., Otoo, E.J., Shoshani, A.: Compressing bitmap indexes for faster search operations. In: SSDBM, pp.
99–108 (2002)

[44] Wu, K., Otoo, E.J., Shoshani, A.: On the performance of bitmap indices for high cardinality attributes. In:
M.A. Nascimento, M.T. Özsu, D. Kossmann, R.J. Miller, J.A. Blakeley, K.B. Schiefer (eds.) Proceedings of the
Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004,
pp. 24–35. Morgan Kaufmann (2004)

[45] Wu, K.L., Yu, P.: Range-based bitmap indexing for high cardinality attributes with skew. Tech. Rep. RC 20449,
IBM Watson Research Division, Yorktown Heights, New York (1996)

[46] Wu, M.C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In: Fourteenth International Con-
ference on Data Engineering, February 23-27, 1998, Orlando, Florida, USA, pp. 220–230. IEEE Computer
Society (1998)

[47] Yan, T.W., Annevelink, J.: Integrating a Structured-Text Retrieval System with an Object-Oriented Database
System. In: International Conference on Very Large Databases, pp. 740–749. Santiago, Chile (1994)

[48] Ziviani, N., de Moura, E.S., Navarro, G., Baeza-Yates, R.: Compression: a key for next-generation text retrieval
systems. IEEE Computer 33, 37–44 (2000)

[49] Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Serveys 38(2) (2006)

[50] Zobel, J., Moffat, A.: Inverted Files for Text Searching. ACM Computing Surveys 38(3) (2006)

15


